
A Data-Centric Mechanism for Wireless Sensor Networks
 with Weighted Queries

Li-Ling Hung+, Sheng-Wen Chang*, Chih-Yung Chang*, Yu-Chieh Chen*
*Tamkang University, Tamsui, Taipei, Taiwan,
+Aletheia University, Tamsui, Taipei, Taiwan

llhung@mail.au.edu.tw, swchang@wireless.cs.tku.edu.tw, cychang@mail.tku.edu.tw, ycchen@wireless.cs.tku.edu.tw

Abstract—Wireless Sensor Networks (WSNs) are characterized by
their low bandwidth, limited energy, and largely distributed
deployment. To reduce the flooding overhead raised by
transmitting query and data information, several data-centric
storage mechanisms are proposed. However, the locations of these
data-centric nodes significantly impact the power consumption and
efficiency for information queries and storage capabilities,
especially in a multi-sink environment. This paper proposes a novel
dissemination approach, which is namely the Dynamic Data-
Centric Routing and Storage Mechanism (DDCRS), to dynamically
determine locations of data-centric nodes according to sink nodes’
location and data collecting rate and automatically construct
shared paths from data-centric node to multiple sinks. To save the
power consumption, the data-centric node is changed when new
sink nodes participate when the WSNs or some queries change
their frequencies. The simulation results reveal that the proposed
protocol outperforms existing protocols in terms of power
conservation and power balancing.

I. INTRODUCTION
A WSN is composed of a few sink nodes and an extremely

large number of sensor nodes that are densely deployed in a
particular area. A sink node is a control center which typically
initiates a request for collecting interested information. Linked
by a wireless medium, the sensor nodes perform distributed
sensing tasks and store particular sensing information for
queries. One critical problem in sensor networks is how to
effectively provide sink and sensor nodes with efficient data
retrieving and storing, respectively. Previous solutions to this
problem can be classified into three categories: local storage
(LS), external storage (ES), and data-centric storage (DCS).

In local storage mechanisms, data is stored in sensor nodes’
local memory when an event is detected. Since the sink node
does not know which sensor nodes store the interested data, a
sink node intending to collect the interested data typically
executes a blind flooding over the whole WSN to send a query
packet defining the criteria of interests. External storage, on
the other hand, proposes another alternative mechanism. Once
a sensor node detects an event, the data is stored at the external
sink. Although there is no cost for sink query, it may waste a
lot of energy for transmitting data to the sink that is not
interested in the data. In the data-centric storage mechanism,
there are numbers of data-centric nodes selected from the
WSN that are responsible for handling data storage and
retrieval. When an event is detected by a sensor node, data is
stored by name at a corresponding data-centric node. Because
all sensor nodes and sink nodes are aware of the information in
data-centric nodes, they do not need to apply blind flooding for
sending data or queries to data-centric nodes.

In literatures, previous study [1] has proposed an efficient
Data-Centric Storage Mechanism for WSNs. The hash
function of the Geographic Hash Table (GHT) is used to map
events to locations of data-centric nodes in the monitoring area.
A sensor node uses the hash function of the GHT to obtain a
location, after which the sensed information will then be stored
in the data-centric node closest to the location using the GPSR
[2] routing protocol. When a sink node intends to collect the
information of an event, it uses the hash function of the GHT

to obtain the location where the event is stored and then adopts
a GPSR routing protocol to send a query packet to the data-
centric node which is the sensor node closest to the location.
Upon receiving the query from the sink node, the data-centric
node replies with the requested data.

An index-based architecture [3] has been proposed to reduce
unnecessary transmission in situations where the ratio of
interested information required from sink node to the sensing
data is relative low. A static hash table is also used to develop
a data-centric ring-based index. In study [4], a Double Rulings
scheme chooses the rendezvous nodes along a continuous
curve to store data instead of one or multiple sensor nodes.
Therefore, the replication curve can increase the fault-
tolerance. Moreover, the Double Rulings scheme also provides
distance-sensitive retrieval scheme such that the sink node
sends a query to travel along a curve that intersects the
replication curve as quickly as possible. When the sink node is
close to the sensor node that sends the sensing data to the
replication curve, it can find the data quickly.

Although the aforementioned articles devoted themselves to
develop data-centric storage architecture in different
environments, most of them did not consider the multiple sinks
environment and the factor of query frequencies. Using a static
hash table to determine the location of a data-centric node
might raise communication overhead which highly relies on
the locations of the sink nodes and the frequencies of data
delivery, especially in a multi-sink environment. Moreover, if
the information of a specific event is stored in a fixed data-
centric node for a long time, sensors nodes that are near the
data-centric nodes would likely exhaust their energy due to
frequent data forwarding, resulting in unbalanced power
consumption among the WSNs.

This paper aims to develop path sharing and Data-Centric
Storage mechanisms for a multi-sink environment. Firstly, a
dynamic data-centric storage mechanism is proposed to
dynamically determine the location of data-centric nodes
according to the location and the requested frequency of
multiple sink nodes. Problems raised because of the change of
data-centric node are investigated and resolved. An efficient
share-path routing mechanism is also presented to construct a
shared path from data-centric nodes to multiple sink nodes,
reducing the redundant packet transmission and the number of
forwarding nodes, and therefore saving the power
consumptions.

The remainder of the paper is organized as follows. In
Section 2, a multi-sink network environment is described.
Section 3 presents an overview of the developed mechanisms,
and illustrates the Data-Centric Routing Mechanism and
Dynamic Data-Centric Storage Mechanism in detail.
Performance study is presented in Section 4 and finally,
Section 5 concludes the paper.

II. NETWORK ENVIRONMENT
The network model is similar to previous works [1, 3] that

have developed data-centric mechanisms for WSNs. All sensor
nodes are stationary and randomly deployed in the monitoring
area. There are no obstacles and holes existing in the WSNs.

978-1-4244-5228-6/09/$26.00 ©2009 IEEE
131

Each sensor node is aware of its own location and exchanges
location information with one-hop neighbors through beacons.
The events will be randomly occurred at the monitoring region
and their values vary with the time. Multiple stationary sink
nodes exist in the sensor network and their locations are
known by all sensor nodes. Each sink node might be interested
in monitoring some event for a specific duration by returning
event values from the data-centric node in a constant frequency.
Therefore, the query packet contains information including
event values, frequency and duration.

III. DYNAMIC DATA-CENTRIC ROUTING
AND STORAGE MECHANISMS

3.1. Protocol Architecture Overview
The proposed Dynamic Data-Centric Storage Mechanism

(DDCRS) mainly consists of two phases: the static phase and
the dynamic phase, both of which are associated with different
operations. Initially, a data-centric node is predefined using
existing schemes [1]. In the static phase, the predefined data-
centric node is responsible for storing the data transmitted
from sensor nodes for replying with required data to the sink
nodes. Herein, the data-centric node defined by a hash table is
called a Home Data-Centric (HD) node. Once a sensor node
detects the event data, it transmits the data to the data-centric
node that is closet to its location using the GPSR routing
scheme [2]. Once the location of the data-centric node changes,
the Dynamic Data-Centric Storage Mechanism will switch to a
dynamic phase, handling both the data storage and the delivery
problems.

Dynamic phase
time

Static phase E Static phase E

No Change Change

E: Benefit Evaluation (Benefit v.s Overhead)
DC: Data-centric node change procedure

DC Dynamic phase
time

Static phase E Static phase E

No Change Change

E: Benefit Evaluation (Benefit v.s Overhead)
DC: Data-centric node change procedure

DC

Figure 1: Static and dynamic phases of the proposed data centric
storage mechanism.

As shown in Fig. 1, the proposed mechanism operates first
in the static phase, and then goes to the dynamic phase. In the
static phase, when a sink node intends to send a query request
to the data-centric node, it uses a pre-defined hash table to
obtain the data-centric location of interested events and then
sends the query packet using the GPSR routing scheme. The
query packet contains information such as the frequency and
duration of the data collection. Upon receiving the query
packet, the HD node periodically replies with the request data
using the proposed Data-Centric Routing Mechanism. Using
to the locations of multiple sink nodes and their requested
reply frequencies, the proposed Data-Centric Routing
Mechanism constructs an efficient shared path for delivering
the requested information with smaller communication
overhead. If any sink node’s query is overdue, the HD node
stops to reply data to the sink node. Furthermore, the HD node
executes a benefit evaluation to calculate the better location
for the data-centric node and compares the benefit to the
overhead of the changing data-centric node. In the case of it
being worthwhile to change, the data-centric change
procedure is executed, and the proposed Dynamic Data-
Centric Storage Mechanism switches to the dynamic phase.
Meanwhile, the HD node still acts as a data-centric node and
the mechanism stays in the static phase. In the dynamic phase,
the new data-centric node is called New Data-Centric node and
is noted as ND for short. The HD node which is an old data-
centric node is called Old Data-Centric node and is noted as
OD for short. In the meantime, the HD node is responsible for
maintaining the location information of the ND node. Once the

ND node changes again, the HD node maintains the up-to-date
ND node’s location information. Maintaining the ND node’s
location information makes the sink nodes’ query and sensor
nodes’ store the correct information after data-centric node
changing.

3.2. Data-Centric Routing Mechanism
A routing protocol is required to establish a route to send

data from a data-centric node to multiple sink nodes. This
subsection describes a routing mechanism that constructs a
shared path to reduce duplicated data transmission. All sink
nodes that have sent requests might have different request
frequencies. Therefore, the problem considered in this paper is
similar to the generalized Steiner tree problem [5], which aims
to minimize the sum of the weighted Euclidean distances.
Since the generalized Steiner tree problem is an NP-hard
problem [5], the computational complexities of the existing
algorithms are too high to be executed in a sensor node which
has limited computational ability. This paper proposes a
heuristic Data-Centric Routing Mechanism which finds the
forwarding nodes to construct the shared path in a distributed
manner. The data-centric nodes and forwarding nodes can
easily select the next forwarding nodes from their neighbors
with low computational complexity.

For ease of description, some symbols are defined below.
Let d(A, B) denote the distance between nodes A and B. Let
ShareGroup(s1, s2, …, sk) represent that k sinks s1, s2, …, sk can
share the same path. Assume there are n sinks s1, s2, …, sn that
request data from data-centric node D. Let fsi denote a query
frequency of a sink si. Since each node is aware of its
neighbors’ location information, node D constructs a Neighbor
Information Table (NIT). Suppose that node D has m
neighbors n1, n2, …, nm. As shown in Fig. 3, in NIT, every
entry ni records the sink nodes in which ni can efficiently
forward packets. More specifically, if the distance d(ni, sj) is
smaller than the distance d(D, sj), data packets can be
forwarded to sink sj through neighbor ni. Therefore, sink sj will
be recorded in the entry associated with ni. Similar to node D,
each node is able to construct its NIT. Let SinkNodeSet(ni) be a
function which returns a sink node set associated with the ni in
NIT. Let ∑

∈

=
)(ns s

ij
jtSinkNodeSe

i fw . Let p be the current

forwarding node and p has m neighbors n1, …, nm. Node p will
select neighbor nx to be the next forwarding node if wx ≥ wi for
all 1 ≤ i ≤ m. That is, the next forwarding node nx should
satisfy the condition wx = max(w1, w2, ..., wm). As a result, the
constructed shared path from node p to the sink nodes has the
maximal sum of frequencies. When the node D intends to
reply data to the multi-sink, it takes the frequencies of
interested sink nodes into account and constructs a shared path
for sink nodes according to the Share_Path_Construction
Algorithm described below. The algorithm selects a neighbor
that can forward data to sink nodes with the maximum sum of
frequencies until the selected neighbors can reply sensing
information to all of the requested sink nodes. Since the route
length of node D and the sink node with larger frequency is
decreased by selecting the forwarding node that can send the
data packet to the sink node with larger frequency, the total
number of transmitted data packets can be reduced. When the
forwarding node is selected, the data-centric node then
broadcasts this information to its neighbors. Upon receiving
the information, the forwarding nodes select their neighbors to
play the role of forwarding nodes by similar operations done
by the data-centric node. After that, the routing table can then
be constructed in each forwarding node.
Algorithm: Share_Path_Construction (n, NIT)
Suppose node D’s neighbors have their sink node sets, k1, k2,…,
km in NIT, respectively.

132

Initial:
 ReplySink = ∅
 SelectedNeighbor = ∅
Begin

while |ReplySink| < n
select nx to be the next forwarding node,

where nx satisfies wx = max(w1, w2, …, wm) and 1≤ x≤ m
 insert SinkNodeSet(nx) into ReplySink set
 insert nx into SelectedNeighbor set

 remove SinkNodeSet(nx) from NIT
end while
Construct routing table with SelectedNeighbor set

End

Some other complicated case may occur since it is possible
that two neighbors can forward to the same sink at the same
time. Therefore, two results of shared routes are possible. To
avoid duplicate transmissions of the same data packet to the
same sink node, the cost of two shared routes are compared,
wherein the smaller one is selected. Regarding the cost
calculation of a shared route, the concept of the shared degree
is introduced below. The degree of path sharing of two sink
nodes, say si and sj, is defined by the common path length of
the two sinks and is denoted by Sd(si, sj). Let symbol αij denote
the angle ∠siDsj. In fact, the angle αij determines the shared
degree of sink nodes si and sj. The larger the angle of αij is, the
smaller the shared degree of nodes si and sj becomes.
Therefore, the value of a shared degree could be estimated
using the following formula which normalizes the value
between 0 and 1.

1 , if 0

(,) 1 , if 0 180
180
0 , if 180

ij

ij
i j ij

ij

Sd s s

α
α

α

α

= °⎧
⎪
⎪= − < < °⎨ °⎪

= °⎪⎩

(1)

Sensor D
(x, y)

E

F

Sink sj
(x2, y2)

Sink si
(x1, y1)

Sd(s
i , s

j)

1 2 1 2(),i j i j

i j i j

s s s s

s s s s

f f f f

f f f f

x x y y

+ +

+ +

αij

(a)

E

H

G

D (x, y)

Sink si
(x3, y3)

Sink sj
(x1, y1)

Sink sk
(x2, y2)αki

αij

αjk

F

(b)

Figure 2: An example illustrating how to evaluate the cost of a shared
path. (a) An example that two sinks share a common routing path. (b)
An example that a route shared by three sinks; sinks si, sj, and sk share
segment DH and then sinks si and sj additionally share segment HF .

The shared degree can be used to estimate the cost of the
shared routing path. Besides, in order to accurately estimate
the cost of the shared route, the frequencies of two sink nodes
are considered in the calculation of the median point of the two
sink nodes. Assume that fsi > fsj. As shown in Fig. 2(a), a

median point E with coordination (
1 2 1 2,i j j

i j i j

s s si s

s s s s

f f f f

f f f f

x x y y

+ +

+ +
) of si

and sj can be found. The end point F of the shared path can
then be calculated by following vector evaluation using the
location information of Sd(si, sj) and point E below. First, d(D,
E) and vector DE are calculated using Equations (2) and (3).

1 2 1 22 2() ()i j i j

i j i j

s s s s

s s s s

f f f f

f f f f

x x y y
DE x y

+ +

+ +
= − + −

(2)

1 2 1 2(,) i j i j

i j i j

s s s s

s s s s

x f f f f

f f f f

x y y
DE x y

+ +

+ +
= − −

(3)

Then, the unit vector u can be obtained by the following
equation.

1 2 1 2

1 2 1 2 1 2 1 2

(,)
2 2 2 2() () () ()

i j i j

i j i j

i j i j i j i j

i j i j i j ji

s s s s

s s s s

s s s s s s s s

s s s s s s s s

x f f f f

f f f f

f f f f x f f f f

f f f f f f f f

x y y

x x y y x y y

x y
DEu
DE x y x y

+ +

+ + + +

+ +

+ + + +

− −
= =

− + − − + −

(4)

Hereafter, d(D, F) can be calculated by shared degree Sd(si,
sj) and unit vector u , as shown in Equation (5)

1 2 1 2() (,) () (,)
DF (,) (,)

i j i j

i j

i j i j

s s s s

i j
s s s s

i j

x f f f f

f f f f

x y y
x Sd s s DE y Sd s s DE

u Sd s s DE
DE DE

+ +

+ +
− ⋅ ⋅ − ⋅ ⋅

= ⋅ ⋅ = (5)

Finally, F can be calculated with Equation (6).

1 2 1 2() ()

(,)

(,) (,)i j i j

i j i j

s s s s

i j i j
s s s s

x f f f f

f f f f

x y y
x DE y DE

F x y
DE DE

Sd s s Sd s s
+ +

+ +
− ⋅ ⋅ − ⋅ ⋅

= + + (6)

The point F is a branch point of shared path of si and sj.
Given a query frequency fsi and fsj of sinks si and sj,
respectively, the cost of ShareGroup(si, sj) is estimated by
RouteCost, as shown in Equation (7), which calculates the
number of packets generated on the path for delivering data
packets to sinks si and sj. In Equation (7), the d(D, F) is the
shared segment length of si and sj and the cost Max(fsi , fsj) is
taken into account. The d(si, F) and d(sj, F) are the segment
lengths that are not shared by si and sj. The costs of d(si, F) and
d(sj, F) are fsi and fsj, respectively. The cost of a shared path of
sinks si and sj can therefore be measured by Equation (7).

(,) (,) (,) (,)i j i j
s s s i s jRouteCost Max f f d D F f d s F f d s F= × + × + × (7)

In case there are more than two sinks, say s1, s2, …, sk, the
same data packet can be shared, and the route cost can be
calculated in the order of the frequencies of sinks, from large
to small. The shared route cost of two sink nodes with the first
two high frequencies will be calculated first and then their
shared point and the sink with higher frequency will be
executed the same operations until all sink nodes are calculated.
As Fig. 2(b) depicts, sinks si, sj, and sk share the same data
packet. Suppose that fsi > fsj > fsk. The shared route cost of
sinks si and sj is first calculated. Then the shared route cost of
the share point F of si and sj and sk is calculated. The final
shared path has sinks si, sj, and sk sharing segment DH and
sinks si and sj additionally sharing segment HF , as shown in
Fig. 2(b). The location of median point E can be calculated by
the locations and frequencies of sinks si and sj and then the
location of point F can be derived by applying Equation (6).
With this, the locations of points G and H can also be obtained.
Consequently, the routing cost of ShareGroup(si, sj, sk) is:

133

(, ,) (,) (,)
(,) (,) (,) (,)

i j k k

i j i j

s s s s k

s s s si j

RouteCost Max f f f d D H f d H S
Max f f d H F f d F s f d F S

= × + × +

× + × + × (8)

In Equation (8), d(D, H) is the shared length of si, sj, and sk
and d(H, F) is the shared length of si and sj. There are costs
Max(fsi, fsj, fsk) and Max(fsi, fsj) on the two shared segments,
respectively. The d(H, sk), d(F, si), and d(F, sj) are the length of
non-sharing paths, with their frequencies being fsk, fsi, and fsj,
respectively.

3.3. Dynamic Data-Centric Storage Mechanism
This subsection proposes a Dynamic Data-Centric Storage

Mechanism that dynamically determines a better location of a
data-centric node according to sink nodes’ location and
requested data collection frequency. Initially, a predefined HD
node determined by the hash mechanism plays the role of the
data-centric node, responsible for storing event information
sent from sensor nodes. When the data-centric node receives a
new query packet or when the old query is overdue, it executes
a benefit evaluation to estimate the benefit and overhead
obtained from changing the location of the data-centric node.
Before estimating the benefit and overhead, the better location
of a data-centric (ND) node is derived. Suppose there exist n
sink nodes si located at (xi, yi), where i=1, 2, …, n and they
query the same data-centric node for data collection. The new
data-centric node should be closer to the sink that has a higher
frequency of request. This will reduce the cost for replying
data to the sink nodes. Therefore, the median point evaluated
based on the locations and frequencies of all sink nodes will be
the better location of a data-centric node. Equation (9) reflects
this concept. An OD node can derive the better location (x, y)
of a data-centric node by using the following equation:

1 1

1 1

/
, where is sink 's report frequency.

/

n n

i i i
i i

in n

i i i
i i

x x f f
f i

y y f f

= =

= =

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

∑ ∑

∑ ∑
(9)

The OD node then estimates the benefit and the overhead of
changing the data-centric node. The benefit evaluation will be
explained in detail in the next subsection. In case it is
worthwhile to change the data-centric node, the OD node
sends an alert packet to find ND which is closest to the
location (x, y) by using the GPSR routing protocol. Upon
receiving an alert packet, the ND node replies to the OD node
with an Ack. The OD node then starts to transmit all event data
and sink query information to the ND node. After the data-
centric change procedure is finished, the ND node takes the
place of the OD node and then now becomes responsible for
the reply data to the sink nodes.

In the dynamic phase, the data-centric node changes from a
HD node to a ND node. However, the new sink that never
queried event information from a data-centric node will be not
aware of the change. In addition, a data-centric node may be
changed several times between two successive queries. This
also makes sink nodes unable to maintain the locations of new
data-centric nodes. Problems raised from the change of data-
centric nodes can be categorized into the following two cases.

(1) New sink query— In the dynamic phase, sink nodes that
have never queried the event before are not aware that the
data-centric node has been changed. Therefore, these sink
nodes will use the hash table and will send their queries to the
HD node. When the HD node receives the sinks’ queries, it
forwards the query packets to the ND node because its location
information is maintained. Upon receiving the query packet,
the ND node executes Data-Centric Routing Mechanism to
construct a shared path from the ND node to all interested sink

nodes, including the new sink nodes, and then replies the data
to sink nodes according to their requests and updates its
location information to these sink nodes for the event type.
When sink nodes receive the location update information from
the ND node, they become aware that the data-centric node has
been changed to the ND node, and will send their query
requests next time to the ND node instead of the HD node.

(2) Data-centric node changes several times— In the
dynamic phase, the data-centric node could be changed several
times between two successive queries of a sink node, causing
the sink node to maintain a wrong location of the data-centric
node. Assume a sequence of nodes d0=HD node, d1, d2, …, dx
=ND node have played the role of the data-centric node
successively. Assume that the location of the data-centric node
maintained by a sink node, say W, is di and the sink W intends
to query information. Therefore, sink W sends a query to di. In
case i<x, node di is an OD node of the event and the location of
the data-centric node maintained by sink W is wrong due to the
frequent change of data-centric node during two successive
queries of sink W. Upon receiving the request packet, the OD
node di forwards the query to the HD node d0, and node d0
forwards the query to correct the ND node dx directly. The
reason for this design is that OD node di can not guarantee that
its next node in sequence is the correct ND node even though it
has maintained the location information of the next ND node
di+1. Since the new ND node always notifies its location
information to the HD node, the HD node maintains up-to-date
location information of ND node dx. Therefore, as the HD node
d0 receives the query forwarded by the OD node di, it forwards
the query to the ND node according to the information it
maintained.

In addition to sink nodes, the change of the data-centric
node also makes sensor nodes maintain the wrong location
information. Operations designed in the proposed mechanism
for sensor nodes are similar to sink nodes as described
previously.

3.4. Benefit Evaluation
There are two cases when the data-centric node will be

initiated to calculate the location of the new data-centric node.
One case is when the data-centric node receives a new query
and the other case is when the old query is expired. To
determine whether or not it is worthwhile to change the
location of the data-centric node, the benefit and the overhead
of changing the data-centric node from the OD node to the ND
node are estimated and compared. Moreover, frequent
changing of the data-centric node will result in a high overhead.
Hence, in the estimation of data-centric node change, benefit
evaluation considers the following three conditions:

(1) Is the remaining time of the old query long enough?
(2) Is the new query’s duration of data collection long enough?
(3) Is the benefit obtained from the change of data-centric node

larger than the overhead?

Consider the conditions of (1) and (2). Suppose that the OD
node has replied data to n-1 sinks, s1, s2, …, sn-1. Assume that
the OD node receives a new query from sink sn. In addition,
assume that the remaining duration of queries of s1, s2, …, sn
are t1, t2,…, tn, respectively, and t1＞ t2＞ …＞ tn-1. In case tn >
tn-1 > tthreshold, it shows that the shortest remaining duration is
long enough for the change of the data-centric node, where
tthreshold is a threshold value of remaining duration of the query.
On the other hand, if tn-1< tthreshold, it means that the remaining
duration of the existing query is too short. Therefore, it is
unnecessary to change the data-centric node for this new query.
Consider the second condition. In case tn-1 > tn > tthreshold, it
shows that the duration of a new query is long enough to

134

change the data-centric node. On the contrary, the duration of
the new query is too short to change the data-centric node.
Consequently, we can determine whether it is worthwhile to
change data-centric node for time constraint using the
following rule:

Time constraint rule:
Let tmin=min (t1, t2, …, tn).
If (tmin > tthreshold) /* worthwhile to change */

Call Benefit_Overhead_Evaluation() /* described later */
Else

No change for data-centric node due to the duration is too
short.

Even though conditions (1) and (2) are satisfied, condition
(3) should be verified to guarantee that the benefit is larger
than the overhead obtained from the change of the data-centric
node. Firstly, let Cost(data-centric node) denote the routing
cost of the data-centric node which needs to reply data to sink
nodes. From the statement in Section III C, it costs less to reply
data to sink nodes if the data-centric node changes to the
median point of the querying sink nodes. Changing the data-
centric node to the median point of the querying sink nodes
can get the benefit Bnt= Cost(OD Node) – Cost(ND Node),
where the calculations of Cost(OD node) and Cost(ND node)
could be obtained by Equation (7). However, an angle
threshold α is used herein to predict the benefit obtained from
the shared paths between two sink nodes. If the angle between
sinks si and sj is smaller than angle threshold α, the cost of
sinks si and sj is calculated by ShareGroup(si, sj). Otherwise,
the costs of si and sj are calculated by their individual path.

E C

C’
(x, y)

Sink Z
(fZ, tZ)

ND Node D’

OD Node D

Sink B
(fB, tB)

Sink A
(fA, tA)

Cost (ND Node)
Cost (OD Node)

Figure 3: An example for illustrating benefit evaluation.

Take Fig. 3 as an example to illustrate benefit evaluation.
Suppose that sinks A, B, Z request for data collection with
frequencies fA, fB, and fz, respectively, and the OD node D
calculates the median points (x, y) of sinks A, B, Z as depicted
in Fig. 8. In case the angle ∠ADB is smaller than the
predefined threshold α and fA > fZ > fB, sinks A and B are
expected to share the same path d(D, C). Let E be the median
point of A and B. The location of point C can be obtained by
applying Equation (6). Cost(D) can then be evaluated by
applying Equation (7). Similarly, Cost(D’) can also be
obtained. Therefore, the benefit Bnt of changing the data-
centric node from the OD node to the ND node is estimated by
Cost(D)-Cost(D’). Discussion of how to set the angle threshold
will be investigated in simulation.

The overhead of the data-centric node change from the OD
node to the ND node could be evaluated by the cost when the
OD node transmits event data and sinks’ information to the ND
node. The overhead, denoted by O, can therefore be evaluated
by Expression (10), where Data is the total data size of the
event data stored in the OD node and sinks’ information.

),(NDODdDataO ×= (10)

After calculating the benefit Bnt and the overhead O, the
following policies can be used to determine whether or not it is
worthwhile to change the data-centric node’s location.

ThresholdOBntT >−×min (11)

, where Tmin denotes the minimal query remaining time of all
sink nodes mentioned in conditions (1) and (2). If Criterion
(11) is satisfied, the data-centric node change procedure
described previously is executed. The developed mechanism
then switches to the DC stage, as depicted in Fig. 2.

IV. SIMULATION
This section investigates the performance of the proposed

Dynamic Data-Centric Routing and Storage Mechanisms
(DDCRS). The following first describes the simulation
environment then shows the investigated simulation results.

The proposed DDCRS mechanism was implemented in
GloMoSim (version 2.03) [6] and is compared with four
storage mechanisms: LS, ES, DCS [1] and Double Ruling [4]
(DR in short). In the DDCRS mechanisms, a data-centric node
considers executing the Dynamic Data-Centric Storage
Mechanism only when it receives queries from more than one
sink node. In other words, if the data-centric node only
receives one query from a sink node, it keeps operating in the
traditional DCS [1] mechanism. The DCS, DR, and DDCRS
mechanisms belong to DCS-based mechanisms. The number
of sensor nodes is set to 1500. There are three sink nodes in
the WSN at the corner of the monitoring square area. The
requested data collection frequencies of the three sink nodes
are set to 1/10dps, 1/20dps, and 1/40dps (data per second),
respectively. The query generation rate of each sink node is
1/10qps (query per second). That is, each sink node sends a
query every 10s. In the WSN, nine event types and 300 data in
each event type possibly are detected by the sensor nodes.
Each sensor node has the same probability of event detection.
Related parameters of the simulation are listed in Table I.
Each sink node randomly selects an event type as its query
interest, but the number of event types that each sink can query
is under control. Each result is obtained from an average of 10
experiments. The 95% confidence interval is always smaller
than ±5% of the reported values.

Table I: Simulation parameters
Parameters Value
Node density (1/m2) 1/1024
Radio range (m) 80
Total number of event types 9
GPSR beacon interval (s) 1
GPSR beacon expiration (s) 5
Planarization GG
Simulation time (s) 420
Number of detected data in each event type 300
Number of sink nodes 3
Query generation rate (qps) 1/10
Shared path angle threshold (°) 60
Time constraint limit (s) 1

Figure 4 compares the five mechanisms in terms of total
message by varying the number of queried event types. The
duration of each query is 300s. In Fig. 4, the total messages of
the LS is increased significantly with the number of queried
event types since the LS needs to use blind flooding for each
query and large number of sensor nodes reply data to sink
nodes periodically. The total number of messages of the ES is
constant since sensor nodes send all detected event data, to
sink nodes for storing.

DCS-based mechanisms outperform the LS and ES since
they use hash functions to check the location of the data-
centric node and then adopts the routing mechanism to send
query packets instead of blind flooding. Aside from this,
DCS-based mechanisms only reply to interested data from the
data-centric node to sink nodes periodically. The number of

135

queried event types therefore has a small impact on message
overhead in DCS-based mechanisms. Compared with the DCS
mechanism, the DR mechanism provides the distance-
sensitive retrieval scheme such that the sink node sends a
query to travel along a curve that intersects the replication
curve as quickly as possible. When the sink node is close to
the sensor node that sends the sensing data to the replication
curve, it can find the data quickly. Therefore, the DR
mechanism has smaller data traffic compared to the DCS
mechanism. When the number of queried event types is small,
DDCRS and DCS mechanisms have similar messages
overhead since a data-centric node receives more than one
query with small probability. However, when the number of
queried event types becomes larger than three, the probability
that a data-centric node receives more than one queried event
type increases. Hence the DDCRS initiates the Dynamic Data-
Centric Storage Mechanism to change data-centric nodes,
reducing the total number of messages. In addition, the
DDCRS adopts Data-Centric Routing Mechanism to construct
a shared path for replying data, thereby reducing duplicate
messages. As a result, the DDCRS outperforms the other four
mechanisms in terms of messages overhead when the number
of queried event types is larger than 3.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500

1 2 3 4 5 6 7 8 9

Number of queried event types (per sink)

H
ot

sp
ot

 u
sa

ge

LS
ES
DCS
DR
DDCRS

Figure 4: The comparison of the five mechanisms in terms of total
messages by varying the number of queried event types.

Figure 5 compares the performance of different mechanisms,
while the duration of each query varies, ranging from 50s to
400s. The number of event types is set to four. The total
number of messages of the LS and the DCS-based mechanisms
increase with the duration of queries. The DCS-based
mechanisms store the data in data-centric nodes and therefore
the duration time only affects the traffic on data-centric nodes.
As a result, the duration of each query minimally affects DCS-
based mechanisms. Since the DDCRS dynamically changes
data-centric nodes according to the benefit evaluation in
Dynamic Data-Centric Storage Mechanism, it can efficiently
reduce the total number of messages in the WSN. Moreover,
the DDCRS uses shared paths to reduce traffic from data-
centric nodes to multiple sink nodes, resulting in less traffic in
event data delivery. Hence, the DDCRS outperforms DR and
DCS mechanisms and works well in applications that demand
collecting data for a long period of time.

0
15000
30000
45000
60000
75000
90000

105000
120000
135000
150000
165000
180000

50 100 200 300 400

Query duration (s)

To
ta

l m
es

sa
ge

s.

LS
ES
DCS
DR
DDCRS

Figure 5: The impact of query duration on message overhead.

Figure 6 examines the impact of query duration on hotspot
usage. The LS and DCS-based mechanisms increase with the
query duration, but the ES keeps a constant. Since the DCS
mechanism fixes data-centric nodes, the hotspot usage
increases significantly. In the DR mechanism, the distance-
sensitive retrieval scheme can balance the traffic load of the
data-centric nodes. Therefore, the hotspot usage of the DR
mechanism is smaller than that of the DCS mechanism.
Compared to the DR mechanism, the DDCRS mechanism
distributes traffic of data-centric nodes on HD node, ND node
and several OD nodes. Therefore, even though the query
duration is long, the proposed DDCRS mechanism does not
significantly increase the hotspot usage. Moreover, the
DDCRS has the lowest hotspot usage because it reduces
duplicated transmissions of event data from data-centric nodes
to multiple sinks by constructing a shared routing path.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

50 100 200 300 400

Query duration (s)

H
ot

sp
ot

 u
sa

ge
.

LS
ES
DCS
DR
DDCRS

Figure 6: The impact of query duration on hotspot usage.

V. CONCLUSION
This paper has proposed a novel Dynamic Data-centric

Routing and Storage Mechanisms. The developed routing
mechanism automatically constructs shared paths from data-
centric nodes to multiple sinks, reducing duplicate packets
transmission and therefore saving the energy consumption of
forwarding nodes. In addition, a dynamic data-centric storage
mechanism has also been proposed to determine the better
location for the new data-centric node. A benefit evaluation
procedure has been developed to estimate the benefit and the
overhead of changing the data-centric node, ensuring that this
change is cost-effective. The simulation results show that the
DDCRS outperforms existing data storage mechanisms in
message overhead, power consumption, and power balancing
for applications of long time data collection with a large-scale
WSN.

REFERENCES
[1] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.

Shenker, “Data-Centric Storage in Sensornets with GHT, a
Geographic Hash Table,” Journal on Mobile Networks and
Applications, vol. 8, no. 4, August 2003, pp. 427-442.

[2] B. Karp and H. T. Kung, ”GPSR:Greedy Perimeter Stateless Routing
for Wireless Networks,” Proceedings of International Conference on
Mobile Computing and Networking (MobiCom), pp. 243-254, Boston,
Massachusetts, August 2000.

[3] W. Zhang, G. Cao, and T. L. Porta, “Data Dissemination with Ring-
Based Index for Wireless Sensor Networks,” IEEE Transactions on
Mobile Computing, vol. 6, no. 7, July 2007, pp. 832-847.

[4] R. Sarkar, X. Zhu, and J. Gao, “Double Rulings for Information
Brokeragein Sensor Networks,” Proceedings of International
Conference on Mobile Computing and Networking (MobiCom), pp.
286-297, Los Angeles, California, USA, September 2006.

[5] Vardges Melkonian,” New primal-dual algorithms for Steiner tree
problems,” Computers and Operations Research, vol. 34, no. 7, July
2007, pp. 2147-2167.

[6] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a Library for
Parallel Simulation of Large-Scale Wireless Networks” Proceedings
of the 12th Workshop on Parallel and Distributed Simulations, pp.
154 - 161, Canada, 1998.

136

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

